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Gradient Hydroxyapatite Chromatography with Small 
Sample Loads. IV. Gaussian Expression of the 
Chromatogram and a Further Consideration on the 
Resolving Power of the Columns 

TSUTOMU KAWASAKI 
LABORATOIRE DE GENETIQUE MOLECULAIRE 
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE 
FACULTE DES SCIENCES 
PARIS 5 ,  FRANCE 

Abstract 

In earlier papers a pair of equations that represent a theoretical chromatogram 
using an intermediate parameter was derived. In the present paper the two equations 
are reduced into a single Gaussian form; essentially the same chromatogram can be 
calculated from the new equation. For a practical purpose, this equation is much more 
useful. Introducing a further approximation, the change in the chromatographic 
resolution occurring with a change in the experimental condition can explicitly be 
understood. This approximation, with a slight modification, is useful for roughly 
estimating the optimal chromatographic condition with a very simple calculation. A 
limit of the application of the theory occurring in an extreme case is discussed. 

INTRODUCTION 

Earlier (I, 2) a theory of hydroxyapatite (HA) chromatography with small 
sample loads was developed for linear gradient elution; the elution of 
molecules is carried out by competition with particular ions from the buffer 
for adsorbing sites on the HA crystal surfaces ( I ) .  With small sample loads 
the chromatographic behavior of any single component in the mixture is 
independent of the presence of the other components. The theory in Refs. I 
and 2 was confirmed experimentally (3) .  In the theory ( I ,  2) ,  however, a 
chromatogram is described in terms of a pair of equations by using an 
intermediate parameter [eqs. 36 (or 36’) and 34 in Ref. I ,  or eqs. 62 and 73 
in Ref. 2; reproduced as Eqs. (1) and (2) in this article]; it is not easy to 
understand intuitively the chromatographic behavior of molecules from these 
equations. 
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886 KAWASAKI 

In Ref. 3 it was shown numerically that the shape of a theoretical 
chromatogram calculated from the two equations is almost Gaussian (in 
agreement with experiment). In the present paper an approximation is 
introduced to reduce the two equations into a single Gaussian expression. It 
can be confirmed that essentially the same chromatogram can be calculated 
from the new equation. Introducing a further approximation for the standard 
deviation of a chromatographic peak, a change in the chromatographic 
resolution occurring with change in the experimental condition can explicitly 
be understood. This approximation (with a slight modification) is useful for 
roughly estimating the optimal chromatographic condition with a very simple 
calculation. 

THEORETICAL 

Gaussian Approximation 

A pair of equations representing a theoretical chromatogram for any 
component of the mixture that have been derived in earlier papers (I, 2) (see 
“Introduction”) can be written as 

and 

m = mh + r ( m x )  - s (2) 

where mh is an intermediate parameter. s and r (mx)  are defined as 

s = g L  

and 
( 3 )  

respectively. Physical meanings of the symbols involved in Eqs. (1)-(4) are: 

m = molarity of competing ions in the chromatogram; the chromato- 
gram is represented as a function of m [when the experimental 
parameter s (see below) is given]. SinceA (Eq. 1) is equal to the 
mean concentration of sample molecules within the last section at 
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GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. IV 887 

the bottom of the column, m also represents the mean ion molarity 
within that column section (which increases linearly with increase 
in elution volume V); within a column section, the ion molarity 
generally is heterogeneous due to longitudinal diffusion in the total 
column. 

mA = local molarity of competing ions within the last section at the 
bottom of the column. 

m,, = initial molarity of competing ions at the beginning of the gradient 
introduced at the top of the column. 

BA(mA)  = partition of sample molecules (under consideration) in solution or 
in the mobile phase, occurring in a local interstitial elementary 
volume SVA within the section at the bottom of the column; in SVA, 
the ion molarity is mA. BA moves between 0 and 1, increasing 
monotonically with an increase of mh (see Eq. 10). 

L = length of the column. 
g = positive constant representing the slope of the molarity gradient of 

competing ions in the column; this is expressed as the increase in 
mean ion molarity (within a column section) per unit column 
length, measured from the bottom to the top. Therefore, the 
experimental parameter s (Eq. 3) has a dimension of molarity; 
when s is given, the chromatogram can be represented as a function 
of m. 

= positive constant with a dimension of length that measures the 
longitudinal diffusion in the column. 

In the idealized case of no longitudinal diffusion in the column, the 
chromatogram for any component of the mixture is a sharp peak with an 
infinitesimal width; the elution molarity, p, for this peak (when s is given) can 
be represented as 

r ( p )  = s ( 5  1 
(see Eq. A23 in Appendix I1 of Ref. I ) .  Let us now introduce an approxima- 
tion such that, even with the actual case with longitudinal diffusion in the 
column, the molarity range over which appears a chromatographic peak (with 
finite width) is small around the mean value p; within a chromatographic 
peak, the partition, BA(mA), of molecules in solution is essentially constant, 
being equal to BA(p). This means that the derivative of the function <mi) 
(Eq. 4) is essentially constant, and that it is equal to [dr(mx)/dm~]mx=r; by 
using a Taylor expansion around p, r(mh) can be represented at 
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888 KAWASAKI 

On the basis of Eqs. (2) and (4)-(6), mh can now be represented in terms of 
m and p as 

mA = (1  - BA(E*lm + BA(P)p ( 7 )  

By substituting both Eq. (7) and the approximate expression, Bh(p), of 
B),(m),) into Eq. ( l ) ,  a Gaussian approximation ofJI(m): 

can be obtained (where it is emphasized that p is a function of s; cf. Eqs. 5 ,  
12, and 13); the standard deviation, u, can be represented as 

It should be noted that if bothg and s (or L ;  see Eq. 3 )  are given, u is simply 
proportional to A ( E q .  9). Therefore, the dependences of u upon g and s 
(or L )  is independent of the value of eo; the optimal chromatographic 
condition can be given independently of the value of 8, (see “General 
Discussion”). 

The function &(m),) or &(p) is given by Eq. ( A l )  in Appendix I of Ref. I 
or Eq. (75) in Ref. 2, which can be written as 

where 

Physical meanings of the parameters in Eqs. (10) and (1 1) are: 

q‘ = positive constant representing the property of competing ions. 
P = positive constant representing the property of the column. 
x’ = average number (in equilibrium state) of adsorbing sites of H A  

on which the adsorption of competing ions is impossible due to 
the presence of an adsorbed molecule; x‘ represents, therefore, 
the effective dimensions of the sample molecule. 

x = average number (in equilibrium state) of functional groups per 
molecule that react with sites of HA. 

- E ( E  > 0) = adsorption energy of a functional group of the molecule onto 
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GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. IV 889 

one of the sites of HA. Therefore, -XE  represents the energy 
per molecule on the HA surface. 

r = the number of effective geometrical configuration(s) of a 
molecule on the crystal surface (in equilibrium state). 
Therefore 

Q 3 -kT(ln q - In p )  
= - X E  - k T  In z 

represents the free energy per molecule on the HA surface 
(neglecting the solvent effect). 

By using Eqs. (10) and (4), Eq. (5) can be rewritten as 

1 
s =  [(p’p + l)X’+’ - (p’mi” + 1F’+’]  (12)  

(x’ + 1)v’q 
which can be solved with respect to p, giving the function p(s): 

(13)  
1 
P’ 

&) = - ([(x’ + 1)p’qs + (p’rn1, + l ) X ’ + ~ ] I ’ ( X ’ + l ) - -  1) 

Further Approxi mat ions 

column, the relationship 
In the usual case of the molecules that are initially retained at the top of the 

(p’p + l ) X ’ + I  >> ($mi, + lF’+l (14)  
should, in general, be fulfilled (cf. “Theoretical” Section in Ref. 2 and 
“General Discussion”). Therefore, ifx’ is large enough, then, with Eqs. (14) 
and (12), the second term in the denominator on the right-hand side of Eq. 
(10) can be reduced to 

By applying Eq. (15) to Eq. (9), an approximate expression of c 
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890 KAWASAKI 

can be obtained. Equation (16) shows that, if the column length L is 
constant, then u increases linearly with an increase in the slope g of the 
molarity gradient. Ifg is constant, u decreases with an increase of L when L 
is small. u increases, however, after the first decrease; the L value giving u 
the minimum value (denoted by L*) and the minimum u value (denoted by 
dr) can be written as 

and 

respectively. (For further argument, see “General Discussion”). 
In many instances the molecular weights of the samples applied to HA 

chromatography are in the range of lo4 (globular protein) to lo8 (virus 
particle and intact DNA molecule) daltons; it can be deduced that the x’ 
value varies in the range of 10 to more than 1000 (cf. “General Discussion”). 
However, the elution molarity, p, does not vary so much, being usually of the 
order of 0.1 to 0.2 M.  Now, if x’ and q are both large, Eq. (1 5 )  can be 
represented roughly as 

Therefore, Eqs. (1 7)  and (1 8) can be written roughly as 

and 

respectively. Equations (20) and (21) show that both L* and dr decrease 
with an increase of x’ if p is (almost) constant. (For further argument, see 
“General Discussion”). 
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General Discussion 

In Ref. 3, on the basis of Eqs. (1) and (2) (and Eq. lo), (T was calculated 
under different experimental conditions for some typical model molecules 
(Figs. 1-3 in Ref. 3; cf. Figs. 2 and 3 herein); the resolution, R,, of the column 
was also estimated from Eqs. (1) and (2) (and Eq. 10) (Figs. 4, 7, and 10 in 
Ref. 3). It can be shown, however, that both (T and R, that coincide almost 
completely with those obtained in Ref. 3 can be calculated by using Eqs. (9), 
(lo), and (1 3) (see below). The shape of the chromatogram calculated from 
Eq. (8) (and Eqs. 10 and 1 3) is essentially identical with that calculated from 
Eqs. (1) and (2) (and Eq. 10); a typical example of such a calculation is 
shown in Fig. 1 for the lysozyme model molecule. (For details, see the legend 
of Fig 1 .) For practical purposes, a simple equation, Eq. (8), is much more 
useful than a pair of equations, Eqs. (1) and (2). 

50 

4 0  

3 0  
fs  

2 0  

10 

0 

FIG. 1. Two theoretical chromatograms for lysozyme [whenL = 21 (cm) andg = 1.18 X 
(Mlcm)] as functions of m ,  calculated from Eqs. ( l ) ,  (2), and (10) (-), and Eqs. (8), (10). 
and ( 1 3 )  (--);the former chromatogram is identical with the left-hand side pattern in Fig. 5(a) in 
Ref. 3. Bothg and m concern competing potassium ions from the buffer; m is written, therefore, 
as m K+) (abscissa of the figure). Both the centers of gravity of the chromatograms and twice the 
standard deviations are also shown. Lysozyme is characterized byx’ = 7 and Inq = 6.7 (eqs. 10 
and 11; see Ref. 3). The numerical values ofthe other parameters are:q’ = 9.0 ( M - I ) ,  8, = 0.3 
(cm) and min = 0.0015 (M) (3). 
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0 

z 
E 
v 
h + 
Y 
b- 

FIG. 2. Standard deviations u for the lysozyme model as functions of L for three different g, 
calculated from Eqs. (9), (lo), and (1 3 )  (or Eqs. 1 , 2 ,  and 10) (~ -), and from Eq. (16) (- -); the 
former curves are identical with the corresponding curves in Fig. 2 in paper (3) .  Arrows show the 
L* values (Eq. 17). In order to show that both u andy concern competing potassium ions from 
the buffer, these are written as u + and g(K+), respectively. The numerical values pf the 
parameters necessary for the calculation are shown in the legend of Fig. 1. ( K  

Let us examine the validity of Eq. (1 6). Three continuous curves in Fig. 2 
represent u for the lysozyme model molecule (see above) as a function of L 
for three different g values, calculated from Eqs. (9), ( lo ) ,  and (1 3); these 
curves cannot be distinguished from the corresponding curves in Fig. 2 in 
Ref. 3, calculated from Eqs. ( 1 )  and (2). Now, the three discontinuous curves 
in Fig. 2 are those obtained from Eq. (16); arrows indicate L* values (Eq. 
17). For the curve withg = 3.53 X Mlcm, however, L* (= 1170 cm) 
giving d = 1.87 (mM) (Eq. 18) is outside the figure. It can be seen in Fig. 2 
that, at least in the neighborhoods of the column lengths L*, the coincidences 
of the B values calculated from the different methods are good; dr represents, 
with a good approximation, the true minimal B value that can be obtained for 
a given g value. 

It can be shown that the precision in the approximation of Eq. (16) 
increases, in general, with an increase in x’ or the dimensions of the 
participating molecule. For instance, the ucurves for a molecule withx’ = 70 
(Le., the molecule with x’ ten times as large as that for lysozyme; cf. the 
legends of Figs. 1 and 3 )  that cannot be distinguished from those shown in 
Fig. 2 in Ref. 3 (calculated from Eqs. (1) and (2)) can be calculated even by 
using Eq. (16). The increase in the precision in Eq. (16) occurring with an 
increase ofx’ can also be understood from Fig. 3. Thus the continuous curve 
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FIG. 3. Dependences of u upong when L = 50 (cm) for three model molecules with differentx‘ 
values. The molecule with x‘ = 7 is the lysozyme model (In q = 6.7) used in both Figs. 1 and 2; 
the molecule with x’ = 70 (and In q = 100.3) is identical with that considered in Ref. 3 (the 
section entitled “Analysis of Several Experiments,” and the molecule with x’ = - can have any 
In q value. The continuous curve withx’ = 7 is calculated from Eqs. (9), ( lo),  and (13) (or Eqs. 
1,2, and 10); the discontinuous curve withx’ = 7 (which is a straight line) is calculated from Eq. 
(16). Concerning the molecules withx’ = 70 andx’ = m, (essentially) identical straight lines can 
be obtained from any method of calculation. The continuous curves with x’ = 7 and x’ = - are 
both identical with the corresponding curves in Fig. 3 in Ref. 3. Three vertical lines show the 
three g’s in Fig. 2. 

indicated by x’ = 7 in Fig. 3 represents u for the lysozyme model molecule 
(when L = 50 cm) as a function o fg ,  calculated from Eqs. (9), ( l o ) ,  and 
(1 3); this cannot be distinguished from the corresponding curve in Fig. 3 in 
Ref. 3 calculated from Eqs. (1) and (2). The discontinuous straight line (for 
x’ = 7)  in Fig. 3 is calculated from Eq. ( 16). With the molecule with x’ = 7 0  
(considered above), however, the curve obtained from Eq. (16) cannot be 
distinguished from that obtained from Eqs. (9), ( l o ) ,  and (1 3) (or Eqs. 1 and 
2), giving a straight line (see Fig. 3); with a further increase of x’, this latter 
tends to a straight line indicated by x’ = m in Fig. 3. 

Except for the mixture of molecules with both small and heterogeneous 
dimensions, the resolution, R,, of the column is almost inversely proportional 
to the mean o value in the mixture (see Ref. 3); by replacing the molecular 
parameters x’ and q (Eq. 1 1 )  by mean values in the mixture, the optimal 
column length and corresponding reciprocal of the chromatographic resolu- 
tion (relatively speaking) can be represented approximately by Eqs. (1 7) and 
( 18), respectively. Equation ( 18) shows that the optimal column resolution 
( l /a*)  increases with a decrease ofg; the optimal column lengthL* increases 
at the same time with a decrease ofg (Eq. 17). However, in the neighborhood 
ofL*, the variation in u occurs only slightly with a change ofL;  the width in 
the region of the column length (around L*) where u is essentially constant 
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894 KAWASAKI 

increases with a decrease of g (Fig. 2). From a practical point of view, a 
minimal u or a maximal chromatographic resolution would generally be 
obtained even with a column with a length of about L*/4 (see Fig. 2);  this 
would be the best column length since the shorter the column, the easier is the 
experiment. 

On the basis of Eq. (20), let us deduce best column lengths for some typical 
molecular mixtures; we here always assume thatg = 3.53 X Mlcm (cf. 
Fig. 2). Now, for lysozyme [molecular weight = 1.43 X 104 daltons (4); 
lysozyme competes with potassium ions from the buffer for adsorption on the 
H A  surfaces (cf. the legend of Fig. l)], we have: q’ = 9 K’, x’ = 7 (legend 
of Fig. l), and p = 0.1 M (Fig. A1 in Appendix I1 of Ref. 3); from Eq. (20) 
we obtain L* zz 1000 cm. A best column length, L*/4, for a mixture of 
lysozyme-like molecules would, therefore, be about 250 cm (cf. Fig. 2). 
Collagen [which is heterogeneous (3 ,5);  molecular weight = 3 X 16 daltons 
(6)] competes with phosphate ions from the buffer with q’ = 6.7 M-’ (3), and 
it is characterized by x’ = 40 and p = 0.1 M (3). For collagen, we therefore 
obtain L” = 200 cm and L*l4 = 50 cm. D N A  also competes with phosphate 
ions [q’ = 6.7 M-’ ( I ) ] ;  it is usual that p = 0.2 M (7, 8). From the 
experiment of Wilson and Thomas (8), it can be deduced under some 
assumptions that, for DNA’s with molecular weights of the order of lo6 
daltons, x’ = 1000; for these molecules we obtain L* = 10 cm and L*/4 = 2.5 
cm. With DNA it should be noted, however, that except when the sample 
load is extremely small, the mutual interactions among molecules occurring 
on the H A  surfaces play a fundamental role in chromatography (5);  the 
present theory cannot be applied to this case. It should also be noted that the 
effective molecular dimensions x’ per unit molecular weight of collagen is 
much smaller than those for both lysozyme and D N A  (see above); an 
explanation for this difference is given in Ref. 5. 

Limit of the Theory When the s Value is Extremely Small 

Equations ( 1 )  and (2) are given as a solution of the continuity equation for 
an abstract molecular flux occurring on the molarity gradient of competing 
ions that is obtained under a boundary condition given by Eq. (74) in Ref. 2; 
this equation can be written as 

lim LIB,  = S ( m  - min)  
s - + o  

mX-min 

However, Eq. (22) shows that Eqs. (1) and (2) are valid only for the case of 
molecules that are initially retained at the top of the column, forming a 
narrow band (2). Practically, only the case of retained molecules is important 
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since, unless this is the situation, it is unnecessary to apply the molarity 
gradient. Now, the retained molecules are characterized by the fact that when 
mA = mi", BA is almost equal to zero with a large q value (see Eqs. 10 and 1 1) 
since when BA zz 0, then RF zz 0. Mathematically, however, the initial BA 
value at the top of the column is finite even with retained molecules. 
Equations (1) and (2) show that when s (or L )  approaches zero, then u, in 
general, increases (Figs. 1 and 2 in Ref. 3 or Fig. 2 in this paper). In other 
words, with a decrease of s, theA value, or the mean concentration of 
molecules in the interstitial liquid within the last section at the bottom of the 
column, approaches the order of the initial concentration of molecules in the 
interstitial liquid at the top of the column (occurring due to the finite BA value; 
see above). On the basis of Eqs. (1) and (2), it can be shown that, in this 
situation, the left-hand part of the chromatogram is eluted out of the column 
even before the application of the gradient, because (T increases excessively. 
It can be assumed, however, that the case of such a small s value is beyond 
the limit of the application of the present theory [constituted on the basis of 
the introduction of a delta-function (Eq. 22)]. Actually, only experimental 
conditions where molecules can migrate on the column with practically finite 
RF values can be applied. Under these experimental conditions, the BA value 
within the last section at the bottom of the column is not close to zero; the 
mean concentration, A, of molecules in the interstitial liquid within this 
column section, generally, is much higher than the initial concentration in the 
interstitial liquid at the top of the column. Therefore, the width in the 
chromatographic peak is small enough, and virtually no molecules can be 
eluted out of the column before the application of the gradient (see Fig. 1 ); for 
this situation to occur, the s value should be large enough. Of course, it is 
under these experimental conditions that Eq. (8) can be applied as an 
approximate expression of Eqs. (1) and (2). 

Some arguments related to the introduction of the delta-function were 
made in both Refs. 1 and 3; for the case of stepwise chromatography, see 
Appendix 111 of Ref. 1. 
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